Иллюстрированный самоучитель по введению в экспертные системы


Поиск доказательствв системе резолюций



Резолюция представляет собой правило вывода, с помощью которого можно вывести новую ППФ (правильно построенную формулу) из старой. Однако в приведенном выше описании логической системы ничего не говорилось о том, как выполнить доказательство. В этом разделе мы обратим основное внимание на стратегические аспекты доказательства теорем.

Пусть р представляет утверждение "Сократ — это человек", a q — утверждение "Сократ смертен". Пусть наша теория имеет вид

Т={{¬р,q}, {р}}.

Таким образом, утверждается, что если Сократ человек, то Сократ смертен, и что Сократ — человек. {17} выводится из теории Т за один шаг резолюции, эквивалентной правилу modus ponens. .

Выражения {¬р, q} и {р} "сталкиваются" на паре дополняющих литералов р и ¬р, а {q} является резольвентой. Таким образом, теория Алогически подразумевает д, что записывается в форме Т|-q. Теперь можно добавить новую фразу {q} — резольвенту — в теорию Т и получить таким образом теорию

Т'= {{ ¬ip, q}, {p}, {q}}.

Конечно, в большинстве случаев для доказательства требуется множество шагов. Положим, например, что теория Т имеет вид

В этой теории р и q сохраняют прежний смысл, а г представляет утверждение "Сократ — бог". Для того чтобы показать, что Т|- ¬r , потребуются два шага резолюции:

{¬q,p},{Р}/{q}

{¬q,-r},{q} / {-r}

Обратите внимание, что на первом шаге используются две фразы из исходного множества Т, а на втором— резольвента {q}, добавленная к Т. Кроме того, следует отметить, что доказательство может быть выполнено и по-другому, например:

{¬p,q},{¬q,¬r}/{¬p,¬r},

{¬p,¬r},{p}/{¬r}

При таком способе доказательства к Т добавляется другая резольвента. В связи со сказанным возникает ряд проблем.

  • Когда множество Т велико, естественно предположить, что должно существовать несколько способов вывести интересующую нас конкретную формулу (эта формула является целевой). Естественно, что предпочтение следует отдать тому методу, который позволяет быстрее сформулировать доказательство.



    Начало  Назад  Вперед



    Книжный магазин