Иллюстрированный самоучитель по введению в экспертные системы

         

Проект Explainable Expert Systems


Свотаут обратил внимание на проблему "компьютерных артефактов" в тех средствах формирования пояснений, которые использовались в ранее разработанных экспертных системах. Под такими артефактами он подразумевал те аспекты выполнения вычислений, которые связаны не с лежащей в основе системы моделью предметной области, а с программной реализацией алгоритмов самого нижнего уровня. Эти аспекты поведения программы совершенно не интересуют специалистов, пользующихся услугами экспертной системы.

Система XPLAN создавалась в рамках проекта Explainable Expert Systems (EES) [Heches et al, 1985], [Moore, 1995]. Идея этого проекта вполне созвучна существующей в настоящее время тенденции группировать и представлять в явном виде знания различного вида. Кроме того, в рамках этого проекта предпринята попытка использовать формальные методы, которые позволили бы зафиксировать в базе знаний системы основные решения, принимаемые в процессе ее разработки. Отсутствие таких формальных методов приводит к тому, что информация об основных решениях, положенных в основу проектирования, теряется на стадии реализации системы.

На рис. 16.3 представлена структурная схема оболочки, созданной в рамках проекта EES. Обратите внимание на прямоугольник в левой части схемы, который представляет базу знаний системы. В эту базу знаний входят не только модель и правила предметной области, но и много дополнительной информации, например описание терминологии предметной области, информация, связанная с правилами предметной области, о доводах в пользу и против выбора определенной стратегии достижения цели, информация о том, каким целям отдается предпочтение в процессе решения проблемы, и т.д. Знания, выделенные в группу "Интеграция", используются для разрешения конфликтов между правилами предметной области в процессе работы "автоматического программиста", а знания, выделенные в группу "Оптимизация", имеют отношение к производительности экспертной системы, генерируемой этим автоматическим программистом.
Эти служебные группы знаний представляют те виды метазнаний, которые не связаны непосредственно с выбором правил объектного уровня в процессе логического вывода на этапе функционирования экспертной системы, а имеют отношение скорее к этапу ее проектирования.



Рис. 16.3. Структура оболочки EES ([Neches et al., 1985])

Семантика базы знаний системы EES представлена в виде семантической сети, получившей наименование NIKL [Moser, 1983]. Сеть появилась в результате развития идей, положенных в основу создания сети KL-ONE [Brachman and Schmolze, 1985]. NIKL, так же, как и KL-ONE, формирует множество концептов, имеющих собственную внутреннюю структуру (набор слотов или ролей), между которыми можно задавать отношения (формировать связи). NIKL также имеет в своем составе классификатор, который, располагая информацией о структуре конкретной сети и новом концепте с определенной структурой, может поместить этот новый концепт на соответствующее ему место в общей таксономии концептов.

Пусть, например, в сети имеются узлы концептов ЖИВОТНОЕ, СОБАКА и БЕШЕНОЕ-ЖИВОТНОЕ, а в классификатор поступает новый концепт БЕШЕНАЯ-СОБАКА. В ответ классификатор формирует новый узел для этого концепта и отводит ему место в иерархии. Новый узел будет связан "узами наследования" с узлами СОБАКА и БЕШЕНОЕ-ЖИВОТНОЕ. Это выполняется после анализа свойств и характеристик нового концепта (рис. 16.4). Трудно переоценить способность системы наращивать таким образом базу знаний, которая, как правило, никогда не создается за "один присест".

Исчез (Neches) описал применение оболочки EES для построения экспертной системы Program Enhancement Advisor (PEA). Эта программа предназначена для оказания помощи программистам в повышении "читабельности" текстов программ. В той предметной области, в которой должна работать новая экспертная система, концептами семантической сети являются преобразования элементов программного кода, например замена оператора COND языка LISP на конструкцию IF-THEN-ELSE.




Концепт является частным случаем другого концепта, KEYWORD CONSTRUCT, который, в свою очередь, является частным случаем концепта Easy-TO-READ CONSTRUCT. Используя организованную таким образом базу знаний, экспертная система может предложить программисту-пользователю заменить оператор

(COND ((АТОМ X) X) (Т (CAR X)))

другим оператором, смысл которого более понятен при анализе текста программы: (IF (АТОМ X) THEN X ELSE (CAR X)).



Рис. 16.4. Включение нового концепта в семантическую сеть знаний

Знания, которые необходимы непосредственно для решения проблем, также представляются в семантической сети NIKL. Они выражаются в терминах концептов планов и целей, которые организованы в иерархическую структуру. Планы и цели связаны. Каждый план имеет "описание возможностей", в котором представлена информация о том, какие действия можно реализовать с помощью этого плана. Терминологическая информация, хранящаяся в семантической сети, используется генератором программ, например, для того, чтобы собирать воедино отдельные экземпляры концептов.

Генератор программ работает по принципу нисходящего (сверху вниз) уточнения, выполняя декомпозицию целей на подцели. Так, главная цель программы PEA — усовершенствовать программу — разделяется на подцели, например улучшить читабельность. Разработчики системы назвали такой процесс декомпозиции целей "динамическим уточнением, направляемым пользователем", поскольку характер действий, выполняемых создаваемой системой, определяется инженером по знаниям, формирующим базу знаний. Если выбрана определенная цель, скажем улучшить читабельность, то она автоматически становится субъектом процесса дальнейшей декомпозиции цель/подцель. Например, следующими подцелями будет просмотр текста программы и выявление в нем синтаксических конструкций, которые можно безболезненно заменить другими, более понятными, получение подтверждения от пользователя, одобряющего предлагаемую замену, выполнение замены и т.д. Фрагмент предыстории разработки системы PEA, в котором отображена описанная декомпозиция, представлен на рис. 16.5.





Рис. 16.5. Фрагмент предыстории разработки системы PEA, в котором отображена декомпозиция цели на подцели ([Moore, 1995])

Авторы оболочки EES утверждают, что использованный ими подход имеет следующие достоинства.

  • Позволяет относительно просто выразить сложные стратегии высокого уровня, которые в обычных экспертных системах представлены неявно и "упрятаны" в алгоритм интерпретатора.

  • Разделение всех знаний на отдельные группы упрощает разбиение системы на набор относительно независимых модулей, а значит, облегчает последующую модификацию системы в процессе ее эксплуатации.

  • Автоматическая классификация новых знаний с помощью языков представления семантических сетей, подобных NIKL, упрощает разработку и сопровождение системы, поскольку освобождает инженеров по знаниям от забот о структурировании новых знаний.



  • Содержание раздела