Формирование отчетов в системе FRANK
Работая над каким-либо отчетом, авторы могут преследовать совершенно различные цели. В одних случаях составляется беспристрастный обзор состояния дел, в других материал отчета должен подвести читателя к определенному выводу (желательному для автора), в третьих — обосновать определенное решение, принятое ранее. От того, с какой целью составляется отчет, зависит и подбор информации в нем, и стратегия ее освещения. Например, готовя обзор состояния исследований в определенной области для научного журнала, автор старается охватить как можно больший материал, в то время как адвокат в своем отчете ограничивается только теми прецедентами, которые интересуют его клиента.
Система FRANK [Rissland et al., 1993] относится к классу систем с доской объявлений, в которой объединены парадигмы вывода суждений на основе правил и прецедентов и которая предназначена для формирования отчетов по медицинской диагностике. (Название FRANK — искаженная аббревиатура от Flexible Report and Analysis System.) Основной упор при разработке системы был сделан на взаимодействие между целями высокого уровня, которые ставит перед собой автор отчета, и информационными подцелями, такими как извлечение подходящих прецедентов.
В состав системы FRANK входят три главных компонента (рис. 22.3).
Знания, которыми располагает система FRANK, разделены между тремя иерархическими структурами.
Например, является ли отчет суммирующим или аргументирующим, отстаивающим определенную позицию или нейтральным и т.д.
Рис. 22.3. Архитектура системы FRANK
Поток управления в системе можно описать в терминах последовательности шагов обращения к источниками знаний, которые манипулируют данными на доске объявлений (см. об этом в главе 18). Вместо того чтобы по очереди описывать каждый источник знаний, мы представим основные этапы обработки, в результате которых формируется и выполняется план построения отчета. Исходные данные имеют формат перечня тем (например, нужно ли, чтобы определенная медицинская процедура была подтверждена случаями из практики), а выход системы — это отчет, в котором темы изложены в соответствии с заявленными предпочтениями.
Таким образом, сначала система на основании введенной пользователем информации выбирает тип отчета.
Например, пользователь может запросить у системы отчет с предложением, который должен обосновать определенный диагноз. В этом случае система FRANK выберет отчет типа Diagnosis-with-Alternatives (диагнозы и варианты) и воспользуется стратегией уравнивающее сравнение (equitable comparison), которая назначается для этого типа отчета по умолчанию.
Комбинируя тип отчета и стратегию, система строит определенный план, в котором, в частности, есть место и для информации о прецедентах, подходящих для текущего диагноза. Наиболее подходящий прецедент выбирается по совпадению большинства симптомов с анализируемым случаем, но возможны и другие стратегии.
Например, более аргументированная стратегия может потребовать, чтобы прецедент считался подходящим, если:
А что произойдет, если не будет найден прецедент, отвечающий перечисленным требованиям? Тогда требования ослабляются (например, убирается последнее из перечисленных), и поиск повторяется.
Формирование запросов к базе прецедентов выполняется под присмотром источника знаний, который играет роль механизма планирования задач. Такие запросы могут быть частичными, т.е. определенные атрибуты запроса заполняются значениями по умолчанию. Этот же модуль обеспечивает различные варианты поведения системы, если поиск не даст результата. В частности, могут быть изменены ограничения на значения параметров в запросе, после чего поиск возобновляется.
Система FRANK поддерживает две методологии формирования суждений на основе прецедентов:
Выбор той или иной методологии зависит от контекста отчета. Например, атрибуты низкого уровня (вроде возраста и пола пациента) могут быть менее важными, чем факторы высокого уровня, используемые для классификации медицинских процедур.Но возможен и такой вариант, когда к определенной проблеме никак не удается применить факторы верхнего уровня и остается полагаться только на атрибуты нижнего уровня.
Такая гибкость в выборе методологии позволяет уравновесить влияние целей высокого уровня и результатов низкого уровня.