Иллюстрированный самоучитель по введению в экспертные системы

         

в котором основное внимание сосредоточено



В работах Горвица (Horvitz) и Гекермана (Heckerman) продемонстрирован типичный теоретический подход к проблеме неопределенности, в котором основное внимание сосредоточено на сравнении семантик различных формальных языков вычисления оценки степени доверия. Однако нужно иметь в виду, что классическая теория вероятностей также допускает неоднозначное семантическое толкование. Например, в работе [Shafer and Tversky, 1985] отмечаются три способа интерпретации формализма Байеса:

  • семантика частотности — мы задаемся вопросом, как часто при наличии данного свидетельства гипотеза оказывается истинной;

  • семантика пари — мы определяем, каковы шансы на успех при заключении пари в пользу истинности определенной гипотезы в свете имеющихся свидетельств;

  • семантика склонности — мы изучаем причинно-следственную модель и пытаемся ответить на вопрос, насколько хорошо данная гипотеза объясняет наблюдаемую ситуацию.

    Частотная интерпретация меры доверия используется в экспертных системах чрезвычайно редко. Например, в работе [Buchanan and Shortliffe, 1984, Chapter 11] авторы предпочитают рассматривать оценку доверия как степень подтверждаемости гипотезы, что очень близко к семантике пари. Эта же интерпретация имеет совершенно очевидную связь с оценкой степени риска, используемой в эвристических правилах MYCIN. Модель, используемая в системе INTERNIST, ближе к интерпретации склонности, поскольку в ней значительное внимание уделено возможности формирования пояснений и анализу причинно-следственных связей между свидетельствами и гипотезами.

    Таким образом, ясно просматривается тенденция к повышению уровня обоснованности как в теоретических работах, так и в практическом воплощении соответствующих методов в реальных системах.

    Содержание раздела