Иллюстрированный самоучитель по введению в экспертные системы



             

Формирование знаний носнове машинного обучения - часть 2


Такой подход уже успешно опробован в ряде исследовательских систем, и использованные при этом базовые методы составляют предмет обсуждения данной главы.

За последние 10 лет в области исследования методов формирования знаний на основе машинного обучения (в дальнейшем для краткости мы будем употреблять термин машинное обучение — machine learning) наблюдается бурный прогресс. Но мы не будем в этой главе делать широкого, а следовательно, и поверхностного обзора имеющихся работ, а сконцентрируемся на тех методах, которые имеют прямое отношение к проблематике экспертных систем:

  • извлечение множества правил из предъявляемых примеров;

  • анализ важности отдельных правил;

  • оптимизация производительности набора правил.

    Существуют и другие аспекты машинного обучения, которых мы здесь касаться не будем, поскольку пока что еще не видно, как они смогут повлиять на технологию экспертных систем (но нельзя исключать, что в будущем дело может радикально измениться). Читатели, которых заинтересуют такие аспекты, могут обратиться к работам, перечисленным в конце главы.




    Содержание  Назад  Вперед